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Friction and plasticity effects in wedge splitting
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An analysis is given for determining G for removing a thin layer using a wedge. Corrections
are described for both friction and the plastic bending of the layer. Experimental results are
analysed for adhesive joints and for cutting tests on polymers and biological materials. In
all of these the fracture toughness could be found. Some general observations on schemes
for analysing these tests are given. © 1998 Kluwer Academic Publishers

1. Introduction These changes occur during the loading stage and dur-
There are several circumstances when afracture is profng subsequent steady-state propagation bathdo
agated by the action of a wedge or blade. There areemained constant witla predetermined in case 1 and
wedge tests used to determine the fracture toughne$s u case 2.

of adhesive joints [1, 2] and, indeed, one of the earli- Theangler showninthe diagramis aclearance angle
est fracture references, by Obreimoff [3] used a wedgevhich is used to avoid friction on the lower surface.
test to delaminate mica. A closely analogous case i§he adhesive wedge test [1, 2] where two strips are
that of microtomy in which thin slices are removed separated is obtained by adding together two of the
and the toughness determined [4-6] and also a bladgrips shown and having a wedge angle efd a tip
scraping test for coatings [7]. The problem encoun-width of 2u.

tered in analysing all of them is that the work of frac- The forces acting on the wedge are shown in Fig. 1b
ture which is measured includes contributions not onlyand for the case of no friction on the bage(= 0) we
from the material toughness, but also from friction andhave,

from plastic deformation, which creates curling in the

removed layer. There have been some attempts to sep- = K(sina + p cosa) and P = K(cose — p Sin)
arate these effects but none have been completely sat-

isfactory quantitatively. ie.,

The analysis described here arose from a study of the _
peeling of flexible laminates [8, 9] where a scheme was F _ Sina + p CoSx — tana - Z @
developed for calculating the plastic work dissipated. P cose — usina

This same method has been used here in the wedge cut-
ting cases together with the inclusion of friction effects. where

7 1+ (u/tana)
- 1— ptana

2. Friction effects
Fig. 1a shows the general configuration of a wedge o
anglex removing a layer of thicknedsfrom a surface
as a horizontal forcé= is applied. The effect of the
wedge is to apply a vertical forck to the layer thus
developing a bending moment in the layer. There ar
two important cases indicated in the diagram;

+f the force F moves forward a small distance then
the external work input is

dUext == F . dX

For steady-state propagation the crack growth: dx
and for a wedge widtb we have,

1. The sharp wedgex(= constant): In this situation dUex: F
« remains constant as the wedge is forced in and the bd b )
contact point moves closer to the wedge tip.

2. The blunt wedgeu= constant): Here the contact The energy release rate which drives the crack is given
point is maintained at a constant height,above the by [8]
surface andr increases as the wedge is driven in. A
circular pin or radius nosed wedge are examples of this G = Uee  dUs  dUg 3)

case. ~ pbd  bd bd

0022-2461 © 1998 Kluwer Academic Publishers 5351



P noted that forx > tarr*(1/u) no energy release can
be generated.
For the case of friction on the base, (i,eR # 0)

layer removed F

§

1— ptana

\5)&\& F W’ G= % tanoz|:(1 — u?)tana + 2u:| ®

i.e., the effect ofx is approximately doubled.

@

3. Elastic deformations

If the layer deforms elastically when debonded then
there is no energy dissipated other than friction. For
the sharp blade case withfixed G may be found via
Equation 5 by measuring. Howeveru is generally
unknown and one way of overcoming this problem is to
make measurements of the debonded length. This was
the method used by Obreimoffin 1930 [3] in which the
debonded length see Fig. 1a, was measured. If small
angles are assumed then simple beam theory may be
applied since,

4P13 6PI2
=—— and a=——

(b) u= =
Ebh3 Ebh3

Figure 1

. . ) . The energy release rate (Equation 5) is
whereUs is the strain energy andg is the dissipated

energy. (Dynamic effects involving kinetic energy can p 6 /P\2
be included but are ignored here.) G=—a= _3(_> 12
If we assume that the layer is elastic then there are b ER°\ b

no energy changes in the layer in the steady-state, i.e.,
dUs=0 and dJgq =0 since there is no plastic curling. and
However, there is energy dissipation via friction since 5 5
the friction forceu K moves &/ cosa and hence, G= E_h(h_“> _ 3Eh(@> 9)
6 \ I 8 \I2
dUyq uK uwF
= = 4)

bd ~ bcose  bcosa(sina + p Cosa)

Thus, ifl is measureds may be found for either a
fixed @ or a fixedu. By measuring one is effectively

and hence, measuring the radius of curvature of the layer at the
F 1— ptana = debonding poinRy since,
G=|(-—|tana| —— ) = | - Jtana (5)
b tano + 11 b 1 0P 2 3
Ry, Ebm | 12

i.e., the true energy input rate to the layer.
If it is assumed thaG is constant for propagation

then and

b

2
Fy_ _Glana+u) _ - G:E_h.h_2 (10)
tano(1 — p tana) ' 24 R

Foru=0,Z=1andF/b=Gbutforu#0,F/b— 0o  Recent studies of peeling [8, 9] have shown that this
asa — 0 and also ag — tam(1/u). Thereis amin- type of local bending analysis requires a refinement

imum value ofF /b when in that the debonding point does not have a zero
slope and displacement as assumed above. The shear
C—tant (V1+ p2 — 6 force and bending moment at the base give rise to
min ( H M) ©) stretching and rotation of the layer, beyond the debond-
and ing point. The layer effectively acts as if it is longer
thanl by Zh so thatl should be replaced by 4 3h)
F _ G 7 in the above relationships and that the root slope and
) in (m_ M)Z ) displacements are
For small values_o;ﬁ,amm — 45° and decreasesto only oo = EL <1 and up= gh—z (11a)
32 at u = 0.5 with (F/b)min = 2.6G. It should also be 3Ry IRy
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giving

G

Ro I(1+4h)
(11b)

Eh h?2 4h 1 2u
= A" 1+__ )
24 R2 31

It should also be noted that for small angles the sharp

blade case is
F w
b ( + a)

i.e., independent df for a constanG. For blunt blades

For some cutting processes the knife angles are large

(e.g., microtoming) and it is necessary to use large dis-
placement beam analysis. The slope at any point a dis-

tancex from the debonding point on the beangisind
the moment at that point is

M=P(l—-x)+F@u-—uv)

U\Y2/ g \ VA
a=3| - —
h 6Eh

and hence /b will be proportional toh®* for 11 # 0
on substituting forr.
In all these elastic cases, observation would show

wherev is the local displacement. Noting Equation 1 that there would be no residual radius of curling in the

and that

d
& _ Rcosp and

dv .
b % = Rsing

whereR is the local radius of curvature [8] then

M
?ﬂ_qb = —PR[cos¢ + tana - Z - sing]

From beam theory we have

1 12M
R  Ebhs

dR  12P

el m[co&p +tana - Z - sing]d¢

Integrating and noting thalR = oo where¢ =« and
R= Ry at¢ =ag we have

1 24
RZ  EN
+tana - Z(coswg — cosw)]

P
b [(sina — sinap)

where

sin 2 h
o= =—
3Ry

and on substituting fo& from Equation 5

3
G=|=Eh
(=)
tana sirf ag

x [(sina — sinag) + tana - Z(cosap — coSsw)]
12)

i.e., amore precise version of Equation 10 though now

n does have an effect via Z.

debonded layer. If there is curling present then plastic
deformation is present.

4. Plasticity effects

Plastic energy dissipation will occur in the debonded
layer when the bending strain exceeds the yield strain
ey. The onset occurs when

Ry h
which, from Equation 10 is when

ES)Z,h _ aygyh
6 6

whereoy = Esy the yield stress. We shall limit our at-
tention here to the case when there is a large amount of
permanent curvature induced and assume thatthe radius
of curvature remains a@Ry as shown in Fig. 2. There
will be a small increase iRy due to elastic unloading,

but this will be ignored. If we now assume power law
work hardening of the form,

o = ope"

then the plastic momeritl, may be calculated for a
linear strain distribution as shown in Fig. 3, i.e.,

+3 y\"
Mpzb/_% ao<%> -y -dy
_bcroh2 2 h \"
4 \2+n/)\2R
The plastic work done per unit length of layer is thus,
du, R 1
=P _ M.dl =
da /o P <R0)

_baoh2 2 h \"
= R, (2+n)<1+n)<ﬁ) 19

(13)
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This plastic work is also dissipated so the ti@ein
Equation 5 now becomes

P 1duU
G=— - tang — ——2

b b da (15)

For large displacements from Fig. 3 we have

| = Ry(sina — sinag) and u = Ry(1— cosa)

and
Mp = Pl 4+ F(u—up)
: Thus
) Mp _ P [(sine — sinag) + tanaZ(cosag — cosa)]
V bPO = b o (04 [04 0
- 1du
2h/3 [ =1+n Bd—ap (16)
and on substituting in Equation 15;
G = G(sinag)* "
roat " (14 n)tana 1
\4 %o [(sina — sinag) + tanaZ(coswog — Cosw)]
Ug
/ T a7
..A.i If Ry orl andh are measured directly theqg and hence
G may be found since
Figure 2
sin —2 h _(2h 1+2h sin
= 3R  \3I 31 )
s For blunt wedges and small angles this becomes
~ (i 1+n — &(L)Lﬁ_n
bda — CMe0) T @
n+ - 18
_ gy i ooh [ 3«/2uPO 3./2 Po:| (18)
() s
4 (2+n)(1+n) and by measuring, directly G may be found.
T,/__ =
¥
h o N — — _ N
\ _y [
E= R()
Figure 3
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If Fis measured we have,

F —
5= Z[G + G(sinag)** M

(19)

and (sirxg) may be determined from Equation 17. h
Two special cases for the sharp wedge are of interest. R

For low dissipation, i.e.G <« G and/or high friction, 0

i.e., Z> 1,09 — « and Equation 19 then becomes,

and F /b will have a linear dependence ¢nfrom G.
For large dissipationi.eG >> G and/or lower Z, sinxg

b

F_ Z[G + G(sina)'*"]

is small and fon — 0 Equation 17 gives,

(sinag)? — gtana[z —(Z — 1) cos]

and

%: z[GJr\/G-é-tana[Z—(Z—l)COSa]]

i.e., F/bis proportional toyh from G. Forn # 0 the

(20)

dependence becomb¥ @+,

The transition from linear to square root thickness

dependence will be approximately, when

h:ﬁz(

For the small angler, blunt wedge, case the solution

becomes,
F
_ = G1/3
b
h
X Gl/3_|_ L_

300

(5

5. Comparisons with experiments

The first set of data to be considered is that of Thoules:
et al. [2] in which metal strips were wedged apart as
shown in Fig. 4 and the radii of curvatuRy were mea- 20 1
sured for various thicknesses of sthipTwo metals, a
steel and an aluminium alloy were used and three ad
hesives, coded A, B and C. Power law work hardening o L ' w ,
was used to describe the properties so the appropriai
relationship is Equation 18 with a factor of two for the

two arms, which can be rearranged as,

.

2
_|_ -
3V2u

00 h
1+n\2Ry

(

h2
R

) 1(%)z

) /5

2

3vau

(

8G\[Z — (Z—1)cox]
_) sina - cosa

1/3 3 13
Ool.l) :| |:Gl/3 + (500U> :|

h2
Ry

Figure 4
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(b)

Figure 5

The parameter = hff((hh/zz)) ody = (o0/1+ n)(h/2Ry)"

so that for a constar®, h?/Ry will be constant and
Fig. 5a and b shovR, versush? where good linearity
(24) is observed.

)1/2} is the mean stress in the layer and varies only slightly
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TABLE | curvature is apparent in the data and a more sensible
form is Equation 21 which is,

Adhesive h2/Rg (mm) o (MPa) G (kJ/n?)

Aluminium alloyu=1 mm,o =377:%2°> MPa F 3
A 0.148 133 4.6 e ZG + Z,/tana[Z — (Z — 1) COS(X]GgO’o\/h.
B 0.116 125 3.2
c 0.079 114 1.8 L . - .

Steelo — 426913 MPa This line is shown fitted in Fig. 6 with,

A 0.083 243 2.9 )
B 0.055 235 1.6 ZG =28Jm
C 0.026 219 0.6

and

The slope$?/Ry are given in Table | together with
average values af for each case. These latter are not
constant but vary by only=10%. The values of the
computed values of are also given. It is of interest
that the values o are clearly different for the differ-
ent substrates. Values & for adhesives A and B on
aluminium have been reported [10] as 4.1 KJand
2.5 kJ/nt, respectively.

Instrumented microtome machines have been pro- i . )
posed as methods for determining the fracture tought = 0-26 and finallyG = 15 Jint. The transition to lin-
ness of soft materials [4, 5]. In most cases thin layers of@r behaviour is given by Equation 22;
varying thickness are removed arfd/p) is recorded.

The blades are very sharp with tip radii as small as h= E[g[Z —(Z-1 COS‘)‘]}

10 nm and the blade tip angles are aboutté(rovide oo[ 3  Sina - cosa

the necessary blade stiffness. Itis necessary also to give _
some clearance/(in Fig. 1) so the total blade angle  and hence becomes 2.3n. The linear region witln

in about 50 in most cases necessitating the use of thas also shown in Fig. 6.

large angle solution. A good set of data, taken from [5], The liver data is more difficult to analyse, since no
is shown in Fig. 6 and shows/b as a function oh for  yield stress data is known but certaimlyis very small
wood and liver. and no greater than 1 MPa. There is no detectable cur-

In both cases straight lines were drawn and the intervature in the data but the rangetois small. The slope
cepts taken a6 [5]. Such linearity is the case modelled gives,
by Equation 20 which may be written as,

3
Z\/tana[Z —(Z-12) COSoe]Géao
= 43 x 10° J/m? mY/?
Assumingop ~ 50 MPa we have Z 1.9 and since,

Z=1+ (u/tana)/1 — ptana,

Zog = 18 MPa

F 3 .

b 26+ Zé Sina - oo - which suggests a very high Z, and hence higialues,
giving the observed linearity and very lo@ values,
forn=0. i.e., < 2 J/n?, which are sensible.

For the blades used ~ 54° and the slope is thus  Fig. 7 shows data for various polymers, taken from
about 0.30¢. For the wood data this slope is 6.1 MPa. [6] where an ultramicrotome was used giving slices in
Itis not easy to definea yleId stress for wood but it Canthe range 0.05-0,2m. Theyield stresses are not given,
generally be taken as at least 50 MPa. SinceZit  puyt for the materials used they are all about 100 MPa.
can be seen that the linear fit is not reasonable. Indeeglt small thicknesses there is reasonable linearity and

the slopes and intercepts are given in Table IlI.

: — Also shown are the values of Z,andG deduced as-

N
wm
o

& )
E sumingog =100 MPa. The values @ are very small
= . .
= and, as discussed in [6], probably represent true frac-
T 200 oo ture energies for these materials, because plastic energy
dissipation cannot occur in these very thin layers.
L 102 J/m? 4
150 28 + 43VH
TABLE |l Polymer ultramicrotome data from [6]
100 7
o = 100 MPa
50 - Intercept Slope G
37.4 J/m? Material (JIn?) (MPa) z m (I/n?)
28 e
0 : : : : Epoxy A 22 377 12.6 0.63 1.7
0 5 10 15 20 25 EpoxyB 20 140 47 051 42
h (um) PMMA 18 207 6.9 057 27
_ PS 13 83 2.8 0.39 4.7
Figure 6
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0 . . X X ‘ ‘ .
0 100 200 300 400 500 600 700 800
h (um)
Figure 8
TABLE Ill Frozen meat data from [11]
Temp Intercept Slope oo G
(°C) /) (MPa)  (MPa) Z m (I/n?)
-20 100 2.1 4.5 1.6 0.20 62
-10 100 16 14 3.8 0.46 26
-5 100 1.0 0.6 5.6 0.54 18
0 100 0.5 0.2 8.3 0.59 12

*Extrapolated.

presumably because of the ice formed. The high friction
implied in the liver data is supported by these results.

6. Conclusions

The analysis and results given here suggest that it is
possible to determin& via wedge or cutting tests.
However in order to make the necessary corrections
the stress-strain properties must be known. A simple
extrapolation of force per unit width to zero thickness
is fraught with dangers in terms of identifying linear-
ity and correcting the intercept. If both the yield stress
and the friction are unknown then it is not possible to
have any confidence in the results. Wheris known

it does appear possible to dedyceand hence make
corrections for both linear and square root thickness
dependence. The more direct method of measuring the
radius of curvature, either under load or subsequently,
has many attractions since it is much less sensitive to
friction than schemes using force. One may also mea-
sure bothP and F directly in order to define Z and
hence the friction contribution. The most successful
methodology would appear to be to measure forces as a
function of thickness, determine the stress-strain curve
and also measure the curvature. Such schemes would
provide sufficient cross checks to give confidence in the
values obtained.
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