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An analysis is given for determining G for removing a thin layer using a wedge. Corrections
are described for both friction and the plastic bending of the layer. Experimental results are
analysed for adhesive joints and for cutting tests on polymers and biological materials. In
all of these the fracture toughness could be found. Some general observations on schemes
for analysing these tests are given. C© 1998 Kluwer Academic Publishers

1. Introduction
There are several circumstances when a fracture is prop-
agated by the action of a wedge or blade. There are
wedge tests used to determine the fracture toughness
of adhesive joints [1, 2] and, indeed, one of the earli-
est fracture references, by Obreimoff [3] used a wedge
test to delaminate mica. A closely analogous case is
that of microtomy in which thin slices are removed
and the toughness determined [4–6] and also a blade
scraping test for coatings [7]. The problem encoun-
tered in analysing all of them is that the work of frac-
ture which is measured includes contributions not only
from the material toughness, but also from friction and
from plastic deformation, which creates curling in the
removed layer. There have been some attempts to sep-
arate these effects but none have been completely sat-
isfactory quantitatively.

The analysis described here arose from a study of the
peeling of flexible laminates [8, 9] where a scheme was
developed for calculating the plastic work dissipated.
This same method has been used here in the wedge cut-
ting cases together with the inclusion of friction effects.

2. Friction effects
Fig. 1a shows the general configuration of a wedge of
angleα removing a layer of thicknessh from a surface
as a horizontal forceF is applied. The effect of the
wedge is to apply a vertical forceP to the layer thus
developing a bending moment in the layer. There are
two important cases indicated in the diagram;

1. The sharp wedge (α= constant): In this situation
α remains constant as the wedge is forced in and the
contact point moves closer to the wedge tip.

2. The blunt wedge (u= constant): Here the contact
point is maintained at a constant height,u, above the
surface andα increases as the wedge is driven in. A
circular pin or radius nosed wedge are examples of this
case.

These changes occur during the loading stage and dur-
ing subsequent steady-state propagation bothu andα
remained constant withα predetermined in case 1 and
in u case 2.

The angleγ shown in the diagram is a clearance angle
which is used to avoid friction on the lower surface.
The adhesive wedge test [1, 2] where two strips are
separated is obtained by adding together two of the
strips shown and having a wedge angle of 2α or a tip
width of 2u.

The forces acting on the wedge are shown in Fig. 1b
and for the case of no friction on the base (µP= 0) we
have,

F = K (sinα+µ cosα) and P = K (cosα−µ sinα)

i.e.,

F

P
= sinα + µ cosα

cosα − µ sinα
= tanα · Z (1)

where

Z = 1+ (µ/ tanα)

1− µ tanα

If the forceF moves forward a small distance dx then
the external work input is

dUext = F · dx

For steady-state propagation the crack growth dl = dx
and for a wedge widthb we have,

dUext

bdl
= F

b
(2)

The energy release rate which drives the crack is given
by [8]

G = dUext

bdl
− dUs

bdl
− dUd

bdl
(3)
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(a)

(b)

Figure 1

whereUs is the strain energy andUd is the dissipated
energy. (Dynamic effects involving kinetic energy can
be included but are ignored here.)

If we assume that the layer is elastic then there are
no energy changes in the layer in the steady-state, i.e.,
dUs= 0 and dUd= 0 since there is no plastic curling.
However, there is energy dissipation via friction since
the friction forceµK moves dx/ cosα and hence,

dUd

bdl
= µK

bcosα
= µF

bcosα(sinα + µ cosα)
(4)

and hence,

G =
(

F

b

)
tanα

(
1− µ tanα

tanα + µ
)
=
(

P

b

)
tanα (5)

i.e., the true energy input rate to the layer.
If it is assumed thatG is constant for propagation

then (
F

b

)
= G(tanα + µ)

tanα(1− µ tanα)
= Z · G.

Forµ= 0, Z= 1 andF/b=G but forµ 6= 0, F/b→∞
asα→ 0 and also asα→ tan−1(1/µ). There is a min-
imum value ofF/b when

αmin = tan−1 (√1+ µ2− µ) (6)

and (
F

b

)
min
= G(√

1+ µ2− µ)2 (7)

For small values ofµ,αmin→ 45◦ and decreases to only
32◦ atµ= 0.5 with (F/b)min= 2.6G. It should also be

noted that forα ≥ tan−1(1/µ) no energy release can
be generated.

For the case of friction on the base, (i.e.,µP 6= 0)

G = F

b
tanα

[
1− µ tanα

(1− µ2) tanα + 2µ

]
(8)

i.e., the effect ofµ is approximately doubled.

3. Elastic deformations
If the layer deforms elastically when debonded then
there is no energy dissipated other than friction. For
the sharp blade case withα fixed G may be found via
Equation 5 by measuringF . Howeverµ is generally
unknown and one way of overcoming this problem is to
make measurements of the debonded length. This was
the method used by Obreimoff in 1930 [3] in which the
debonded lengthl , see Fig. 1a, was measured. If small
angles are assumed then simple beam theory may be
applied since,

u = 4Pl3

Ebh3
and α = 6Pl2

Ebh3

The energy release rate (Equation 5) is

G = P

b
α = 6

Eh3

(
P

b

)2

l 2

and

G = Eh

6

(
hα

l

)2

= 3Eh

8

(
hu

l 2

)2

(9)

Thus, if l is measuredG may be found for either a
fixedα or a fixedu. By measuringl one is effectively
measuring the radius of curvature of the layer at the
debonding pointR0 since,

1

R0
= 12Pl

Ebh3
= 2α

l
= 3u

l 2

and

G = Eh

24
· h2

R2
0

(10)

Recent studies of peeling [8, 9] have shown that this
type of local bending analysis requires a refinement
in that the debonding point does not have a zero
slope and displacement as assumed above. The shear
force and bending moment at the base give rise to
stretching and rotation of the layer, beyond the debond-
ing point. The layer effectively acts as if it is longer
than l by 2

3h so thatl should be replaced by (l + 2
3h)

in the above relationships and that the root slope and
displacements are

α0 = 2

3

h

R0
¿ 1 and u0 = 2

9

h2

R0
(11a)
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giving

G = Eh

24

h2

R2
0

(
1+ 4

3

h

l

)
,

1

R0
= 2α

l
(
1+ 4

3
h
l

)
(11b)

For some cutting processes the knife angles are large
(e.g., microtoming) and it is necessary to use large dis-
placement beam analysis. The slope at any point a dis-
tancex from the debonding point on the beam isφ and
the moment at that point is

M = P(l − x)+ F(u− v)

wherev is the local displacement. Noting Equation 1
and that

dx

dφ
= Rcosφ and

dv

dφ
= Rsinφ

whereR is the local radius of curvature [8] then

dM

dφ
= −P R[cosφ + tanα · Z · sinφ]

From beam theory we have

1

R
= 12M

Ebh3

i.e.,

dR

R3
= 12P

Eh3b
[cosφ + tanα · Z · sinφ]dφ

Integrating and noting thatR=∞ whereφ=α and
R= R0 atφ=α0 we have

1

R2
0

= 24

Eh3
· P

b
· [(sinα − sinα0)

+ tanα · Z(cosα0− cosα)]

where

sinα0= 2

3

h

R0

and on substituting forG from Equation 5

G =
(

3

32
Eh

)
× tanα sin2 α0

[(sinα− sinα0)+ tanα · Z(cosα0− cosα)]

(12)

i.e., a more precise version of Equation 10 though now
µ does have an effect via Z.

It should also be noted that for small angles the sharp
blade case is

F

b
≈ G

(
1+ µ

α

)
i.e., independent ofh for a constantG. For blunt blades

α = 3

(
u

h

)1/2( G

6Eh

)1/4

and henceF/b will be proportional toh3/4 for µ 6= 0
on substituting forα.

In all these elastic cases, observation would show
that there would be no residual radius of curling in the
debonded layer. If there is curling present then plastic
deformation is present.

4. Plasticity effects
Plastic energy dissipation will occur in the debonded
layer when the bending strain exceeds the yield strain
εy. The onset occurs when

1

R0
= 2εy

h

which, from Equation 10 is when

G = Eε2
yh

6
= σyεyh

6

whereσy= Eεy the yield stress. We shall limit our at-
tention here to the case when there is a large amount of
permanent curvature induced and assume that the radius
of curvature remains atR0 as shown in Fig. 2. There
will be a small increase inR0 due to elastic unloading,
but this will be ignored. If we now assume power law
work hardening of the form,

σ = σ0ε
n

then the plastic momentMp may be calculated for a
linear strain distribution as shown in Fig. 3, i.e.,

Mp = b
∫ + h

2

− h
2

σ0

(
y

R0

)n

· y · dy

= bσ0h2

4

(
2

2+ n

)(
h

2R0

)n

(13)

The plastic work done per unit length of layer is thus,

dUp

da
=
∫ 1

R0

0
Mp d

(
1

R0

)
= bσ0h2

4R0

2

(2+ n)(1+ n)

(
h

2R0

)n

(14)
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Figure 2

i.e.,

dUp

bda
= Ḡ(sinα0)1+ n,

Ḡ =
(

3

4

)1+ n
σ0h

(2+ n)(1+ n)

Figure 3

This plastic work is also dissipated so the trueG in
Equation 5 now becomes

G = P

b
· tanα − 1

b

dUp

da
(15)

For large displacements from Fig. 3 we have

l = R0(sinα − sinα0) and u = R0(1− cosα)

and

Mp = Pl + F(u− u0)

Thus

Mp

bR0
= P

b
[(sinα − sinα0)+ tanαZ(cosα0− cosα)]

= (1+ n)
1

b

dUp

da
(16)

and on substituting in Equation 15;

G = Ḡ(sinα0)1+ n

×
[

(1+ n) tanα

[(sinα− sinα0)+ tanαZ(cosα0− cosα)]
− 1

]
(17)

If R0 or l andh are measured directly thenα0 and hence
G may be found since

sinα0 = 2

3

h

R0
=
(

2

3

h

l

/
1+ 2

3

h

l

)
sinα

For blunt wedges and small angles this becomes

G = σ0h

(2+ n)(1+ n)

(
h

2R0

)1+ n

×
[
n+ 2

3

h√
2uR0

/
1− 2

3

h√
2uR0

]
(18)

and by measuringR0 directly G may be found.
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If F is measured we have,

F

b
= Z[G+ Ḡ(sinα0)1+ n] (19)

and (sinα0) may be determined from Equation 17.
Two special cases for the sharp wedge are of interest.

For low dissipation, i.e.,̄G ¿ G and/or high friction,
i.e., ZÀ 1,α0→ α and Equation 19 then becomes,

F

b
= Z[G+ Ḡ(sinα)1+ n] (20)

and F/b will have a linear dependence onh from Ḡ.
For large dissipation i.e.,̄GÀ G and/or lower Z, sinα0
is small and forn→ 0 Equation 17 gives,

(sinα0)2→ G

Ḡ
tanα[Z − (Z− 1) cosα]

and

F

b
= Z

[
G+

√
G · Ḡ · tanα[Z − (Z− 1) cosα]

]
(21)

i.e., F/b is proportional to
√

h from Ḡ. Forn 6= 0 the
dependence becomesh1/(2+ n).

The transition from linear to square root thickness
dependence will be approximately, when

h = h̄ =
(

8G

3σ0

)
[Z − (Z− 1) cosα]

sinα · cosα
(22)

For the small angleα, blunt wedge, case the solution
becomes,

F

b
= G1/3

×
[

G1/3+ µ√
3

h

u

(
3

8
σ0u

)1/3
][

G1/3+
(

3

8
σ0u

)1/3
]

(23)

5. Comparisons with experiments
The first set of data to be considered is that of Thouless
et al. [2] in which metal strips were wedged apart as
shown in Fig. 4 and the radii of curvatureR0 were mea-
sured for various thicknesses of striph. Two metals, a
steel and an aluminium alloy were used and three ad-
hesives, coded A, B and C. Power law work hardening
was used to describe the properties so the appropriate
relationship is Equation 18 with a factor of two for the
two arms, which can be rearranged as,

G =
[
σ0

1+ n

(
h

2R0

)n]( h2

R0

)
1

2+ n

×
[

n+ 2

3
√

2u

(
h2

R0

)1/2/
1− 2

3
√

2u

(
h2

R0

)1/2
]
(24)

Figure 4

(a)

(b)

Figure 5

The parameter ¯σ = h
∫ +(h/2)
−(h/2) σdy= (σ0/1+ n)(h/2R0)n

is the mean stress in the layer and varies only slightly
so that for a constantG, h2/R0 will be constant and
Fig. 5a and b showR0 versush2 where good linearity
is observed.
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TABLE I

Adhesive h2/R0 (mm) σ̄ (MPa) G (kJ/m2)

Aluminium alloyu= 1 mm,σ = 377ε0.25 MPa
A 0.148 133 4.6
B 0.116 125 3.2
C 0.079 114 1.8

Steelσ = 426ε0.13 MPa
A 0.083 243 2.9
B 0.055 235 1.6
C 0.026 219 0.6

The slopesh2/R0 are given in Table I together with
average values of ¯σ for each case. These latter are not
constant but vary by only±10%. The values of the
computed values ofG are also given. It is of interest
that the values ofG are clearly different for the differ-
ent substrates. Values ofG for adhesives A and B on
aluminium have been reported [10] as 4.1 kJ/m2 and
2.5 kJ/m2, respectively.

Instrumented microtome machines have been pro-
posed as methods for determining the fracture tough-
ness of soft materials [4, 5]. In most cases thin layers of
varying thickness are removed and (F/b) is recorded.
The blades are very sharp with tip radii as small as
10 nm and the blade tip angles are about 40◦ to provide
the necessary blade stiffness. It is necessary also to give
some clearance (γ in Fig. 1) so the total blade angleα
in about 50◦ in most cases necessitating the use of the
large angle solution. A good set of data, taken from [5],
is shown in Fig. 6 and showsF/b as a function ofh for
wood and liver.

In both cases straight lines were drawn and the inter-
cepts taken asG [5]. Such linearity is the case modelled
by Equation 20 which may be written as,

F

b
= ZG+ Z

3

8
sinα · σ0 · h

for n = 0.
For the blades usedα ≈ 54◦ and the slope is thus

about 0.3σ0. For the wood data this slope is 6.1 MPa.
It is not easy to define a yield stress for wood but it can
generally be taken as at least 50 MPa. Since Z≥ 1 it
can be seen that the linear fit is not reasonable. Indeed

Figure 6

curvature is apparent in the data and a more sensible
form is Equation 21 which is,

F

b
= ZG+ Z

√
tanα[Z − (Z− 1) cosα]G

3

8
σ0

√
h.

This line is shown fitted in Fig. 6 with,

ZG = 28 J/m2

and

Z

√
tanα[Z − (Z− 1) cosα]G

3

8
σ0

= 43× 103 J/m2 m1/2

Assumingσ0 ≈ 50 MPa we have Z= 1.9 and since,

Z = 1+ (µ/ tanα)/1− µ tanα,

µ= 0.26 and finallyG= 15 J/m2. The transition to lin-
ear behaviour is given by Equation 22;

h̄ = G

σ0

[
8

3

[Z − (Z− 1) cosα]

sinα · cosα

]
and hence becomes 2.3µm. The linear region with̄h
is also shown in Fig. 6.

The liver data is more difficult to analyse, since no
yield stress data is known but certainlyσ0 is very small
and no greater than 1 MPa. There is no detectable cur-
vature in the data but the range ofh is small. The slope
gives,

Zσ0 = 18 MPa

which suggests a very high Z, and hence highµ values,
giving the observed linearity and very lowG values,
i.e.,< 2 J/m2, which are sensible.

Fig. 7 shows data for various polymers, taken from
[6] where an ultramicrotome was used giving slices in
the range 0.05–0.2µm. The yield stresses are not given,
but for the materials used they are all about 100 MPa.
At small thicknesses there is reasonable linearity and
the slopes and intercepts are given in Table II.

Also shown are the values of Z,µ andG deduced as-
sumingσ0= 100 MPa. The values ofG are very small
and, as discussed in [6], probably represent true frac-
ture energies for these materials, because plastic energy
dissipation cannot occur in these very thin layers.

TABLE I I Polymer ultramicrotome data from [6]

σ0 = 100 MPa

Intercept Slope G
Material (J/m2) (MPa) Z µ (J/m2)

Epoxy A 22 377 12.6 0.63 1.7
Epoxy B 20 140 4.7 0.51 4.2
PMMA 18 207 6.9 0.57 2.7
PS 13 83 2.8 0.39 4.7
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Figure 7

Figure 8

TABLE I I I Frozen meat data from [11]

Temp Intercept Slope σ0 G
(◦C) (J/m2) (MPa) (MPa) Z µ (J/m2)

−20 100 2.1 4.5 1.6 0.20 62
−10 100 1.6 1.4 3.8 0.46 26
−5 100 1.0 0.6 5.6 0.54 18
0 100 0.5 0.2∗ 8.3 0.59 12

∗Extrapolated.

As a final example Fig. 8 shows data from [11] taken
on frozen meat at four temperatures. The thicknesses
are quite large because of the inhomogeneous nature of
the material, but good linearity is observed. The slopes
and intercepts are given in Table III together withσ0
values which are given in [11].

Z and henceµ values are shown which are de-
duced from the slopes andσ0 indicating a reduction
in friction at low temperatures where the meat is more
rigid. G shows an increase with decreasing temperature

presumably because of the ice formed. The high friction
implied in the liver data is supported by these results.

6. Conclusions
The analysis and results given here suggest that it is
possible to determineG via wedge or cutting tests.
However in order to make the necessary corrections
the stress-strain properties must be known. A simple
extrapolation of force per unit width to zero thickness
is fraught with dangers in terms of identifying linear-
ity and correcting the intercept. If both the yield stress
and the friction are unknown then it is not possible to
have any confidence in the results. Whenσ0 is known
it does appear possible to deduceµ and hence make
corrections for both linear and square root thickness
dependence. The more direct method of measuring the
radius of curvature, either under load or subsequently,
has many attractions since it is much less sensitive to
friction than schemes using force. One may also mea-
sure bothP and F directly in order to define Z and
hence the friction contribution. The most successful
methodology would appear to be to measure forces as a
function of thickness, determine the stress-strain curve
and also measure the curvature. Such schemes would
provide sufficient cross checks to give confidence in the
values obtained.
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